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Executive Summary 

The COVID-19 outbreak has brought profound changes to almost every aspect of transportation. With 

changed travel demand, economic activity, and social distancing/stay-at-home policies, transportation 

systems have experienced an unprecedented shift in demand and usage. Leveraging open data from 

multiple sources, this project developed a public all-in-one data dashboard 

(https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/) with interactive analytics and 

visualizations which features both traditional and innovative techniques, such as data mining, agent-

based traffic simulation model and computer vision for real-time detection, to help researchers and 

transportation agencies understand and observe the impact of the pandemic on transportation. This 

project aims to develop results-oriented approaches to aid decision-making and enhance the shared 

knowledge and resiliency of transportation systems in the face of future public health emergencies. 

The COVID-19 Data Dashboard contains the following sub-boards/components: 

I. Mobility Data Dashboard Integrated with Multiple Data Sources 

This interactive mobility data dashboard consolidates public data sources to track the mobility trends on 

transportation systems in New York City (NYC) and Seattle. The mobility board presents multi-data views 

in terms of vehicular traffic volume, corridor travel time and citywide traffic speed, transit and 

paratransit ridership, micromobility usage, freight traffic, and risk indicators like reported crashes, 

pedestrian and cyclist fatalities, and speeding tickets. This sub-dashboard supports scenario analyses 

with these metrics in timeseries or comparisons to understand the temporal and spatial aspects of the 

data. This platform is updated regularly and continues to evolve with the addition of new data, metrics, 

and visualizations. 

II. Sociability Board Based on Computer Vision 

This project also developed a continuous, real-time pedestrian detection framework that uses public 

traffic camera feeds and deep-learning-based computer vision techniques to analyze sidewalk, roadway 

densities and monitor social distancing patterns in urban areas. This framework allows us to capture 

“perishable” data on vulnerable road users and vehicle flows without any additional infrastructure 

investment. It also provides data that assist with answering novel questions such as how often 

pedestrians maintained the recommended “6 feet” of social distance with the unfold of the COVID-19 

pandemic. In addition, system deployment cost estimation and lessons learned are summarized. Since 

the project methodology relies on pre-existing deployed ITS infrastructure, implementation and 

maintenance are low cost and highly scalable. The system deployment cost, based on a 3-year estimate 

for the proposed pedestrian detection system with 68 cameras, ranges from $500 to $1700 per year, 

depending on the usage of local servers or cloud-based services. 
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Compare with the current usage of traffic cameras that often used for monitoring and passive detection 

for incident management, the benefits of the proposed approach include: 1) build on existing resources 

(e.g., CCTV cameras) to reduce agency costs, 2) no additional safety risk and labor cost for field checks as 

it uses remote approach and reference-free distance approximation, 3) enable real-time object 

detection for different road user classes to assist system and local monitoring, 4) account for COVID-19 

impacts such as risk indicator on social distancing and 5) can be easily adopted to other cities/states and 

expanded to other use cases such as traffic counts, incident detection, and curb lane monitoring.  

III. Agent-based Simulation Virtual Testbed  

As a part of the COVID-19 research efforts, C2SMART’s MATSim-NYC agent-based simulation virtual 

testbed was utilized to provide predictions of network performance and emission evaluation for phased 

reopening of COVID-19 in NYC. The findings are summarized in the COVID-19 data dashboard. 

IV. COVID-19 Travel Survey 

An infographic summarizing the findings from the C2SMART COVID-19 travel survey with 2022 

respondents is also presented in the COVID-19 Data Dashboard. This is an online survey focusing on 

travel trends under the impact of COVID-19, which was administered from July to October 2020. The 

objective of the survey is to look at how different disadvantaged population groups, especially people 

with disabilities and low-income households, were affected by the changes as a result of COVID-19 as 

the crisis may magnify the existing systemic inequities and produce new mobility disparities for certain 

disadvantaged populations. The survey data can help us understand what the real needs for 

disadvantaged population groups are, in the event of a pandemic. This, in turn, will aid the cities and 

transportation agencies in assessing a more equitable planning process to address their short-term and 

long-term trip needs. 

V. White Papers 

Over the course of the COVID-19 Data Dashboard's development, the team has published multiple white 

papers detailing this research. All white papers available for open access download. 

Overall, the interactive data dashboard has successfully provided a public platform for visualizing and 

examining short-term and long-term passenger travel and behavior changes, the effect of social 

distancing policies on transit use and mobility patterns, including the decrease and recovery of vehicular 

traffic and transit ridership, changes in speeding behavior and reported crashes, bike usage, and parking 

and freight impacts in response to the pandemic. It will continue to serve as a data visualization hub 

post-pandemic. 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  vi 

Table of Contents 

COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard .................. i 

Executive Summary ............................................................................................................................. iv 
I. Mobility Data Dashboard Integrated with Multiple Data Sources ........................................... iv 
II. Sociability Board Based on Computer Vision ....................................................................... iv 
III. Agent-based Simulation Virtual Testbed ............................................................................... v 
IV. COVID-19 Travel Survey ......................................................................................................... v 
V. White Papers.......................................................................................................................... v 

Table of Contents ................................................................................................................................ vi 
List of Figures...................................................................................................................................... vii 
List of Tables ...................................................................................................................................... viii 
1. Introduction ...................................................................................................................................... 1 
2. Dashboard Architecture ................................................................................................................... 3 

2.1 Mobility Board Architecture ....................................................................................................... 4 
2.2 Visualization Tool Comparison ................................................................................................... 4 
2.3 Data Automation ........................................................................................................................ 6 

3. User Interface and Sub-boards ......................................................................................................... 8 
3.1 Homepage and User interface Design ........................................................................................ 8 
3.2 Mobility Data Dashboard Data Collection and Visualizations .................................................. 13 
3.3 Sociability Board Based on Computer Vision ........................................................................... 17 

4. Measuring Social Distancing ........................................................................................................... 19 
4.1 Related works ........................................................................................................................... 19 
4.2 Reference-Free Video-to-Real Distance Approximation-Based Urban Social Distancing 
Analytics .......................................................................................................................................... 21 

5. Mobility and Sociability Trends During COVID-19 .......................................................................... 27 
5.1 New York City ............................................................................................................................ 27 
5.2 Seattle ....................................................................................................................................... 36 
5.3 Pedestrian and Social Distancing .............................................................................................. 39 
5.4 Agent-based Simulation Virtual Testbed COVID-19 Travel Survey .......................................... 46 
5.5 White Papers ............................................................................................................................ 47 

6. Lessons Learned ............................................................................................................................. 49 
6.1 Developing and deploying computer vision-based data collection applications ..................... 49 
6.2 Dashboard Performance ........................................................................................................... 50 
6.3 Dashboard Automation ............................................................................................................ 50 

7. Conclusion and Future Work .......................................................................................................... 51 
Summary of Research Outputs and Tech Transfer ............................................................................. 53 
References .......................................................................................................................................... 57 
Appendix............................................................................................................................................. 60 

 

  



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  vii 

List of Figures 

Figure 1: Overall Dashboard Architecture ................................................................................. 3 

Figure 2: Mobility Board Architecture ...................................................................................... 4 

Figure 3: Extract, Transform, and Load (ETL) Process ................................................................ 6 

Figure 4: Manual Update Process ............................................................................................ 7 

Figure 5: Semi-automation Update Process .............................................................................. 7 

Figure 6: Full Automation Update Process ................................................................................ 8 

Figure 7 C2SMART COVID-19 Data Dashboard Homepage (Version 1.0). .................................... 9 

Figure 8 Lading Page of the Mobility Sub-board (Version 1.0 & 2.0). ........................................ 10 

Figure 9 C2SMART COVID-19 Data Dashboard Homepage (Version 2.0). .................................. 11 

Figure 10 C2SMART COVID-19 Data Dashboard Homepage (Version 3.0).................................. 12 

Figure 11 NYC Subway Ridership Sub-board. .......................................................................... 14 

Figure 12 NYC City-wide Speed Map Sub-board. ..................................................................... 15 

Figure 13 NYC Speeding Ticket Sub-board (June 2020). ........................................................... 15 

Figure 14 NYC Taxi Trip Duration Sub-board. .......................................................................... 15 

Figure 15 Seattle Traffic Volume Trends Sub-board (SR 99 at Mercer Street). ........................... 16 

Figure 16 China Subway Sub-board. ....................................................................................... 16 

Figure 17 Chicago Sub-board. ................................................................................................ 17 

Figure 18 Sociability Board. ................................................................................................... 18 

Figure 19 Proposed workflow of collecting and mining pedestrian social distance data from 

publicly available surveillance video data [3]. ......................................................................... 22 

Figure 20 The performances of the three models tested at selected locations. ......................... 23 

Figure 21 Proposed real distance approximation method. ....................................................... 25 

Figure 22 Transit Ridership Trends ......................................................................................... 28 

Figure 23 Travel time on 495 corridor (Flushing Meadows Corona Park to NJ Turnpike Exit 16E) 29 

Figure 24 Hourly Travel Time Comparison on the 495 corridor ................................................ 29 

Figure 25 NYC Citywide average speeds (Citywide average speeds February 17-21, 8AM to 6PM 

(left), Citywide average speeds April 20-24, 8AM to 6PM (right)) ............................................. 30 

Figure 26 Midtown Avenue speeds, 8AM to 6PM ................................................................... 31 

Figure 27 School Zone Speeding Ticket Trend in 2020 (weekly sum)......................................... 32 

Figure 28 Citi Bike Ridership Trends (Citi Bike Daily Ridership (left), Citi Bike Monthly Ridership 

Change (2020 vs 2019, NYC only (right))................................................................................. 33 

Figure 29 Spatial distributions of taxis and HVFHS ................................................................... 35 

Figure 30 Yellow/Green Taxi Trip Distance and Trip Duration................................................... 36 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  viii 

Figure 31 Hourly travel time on I-5 in Seattle (Hourly travel time in March and April (left), Critical 

day analysis for I-5 travel time (right) ..................................................................................... 37 

Figure 32 Traffic volume on I-5 (downtown Seattle) ................................................................ 37 

Figure 33 Seattle bike counts near Fremont Bridge (Figure source: Seattle DOT bike counters) . 38 

Figure 34 Example of detection output (including bounding box of identified objects; blue lines 

highlight the pedestrian pairs with a distance less than the threshold; and crowd density pie-

chart.) .................................................................................................................................. 40 

Figure 35 Box plot of the average pedestrian density/frame for different dates. The box shows 

the interquartile range (IQR), the 1st to the 3rd quantile of the data (Q1 and Q3). The whiskers 

extend 1.5 times the IQR from the Q1 and Q3. The green triangles are the mean values, and the 

"notches" indicate the 95% confidence interval of the median. We did not include the outliers in 

this plot, but Table 8 shows the maximum pedestrian densities for each date. ......................... 41 

Figure 36 The total number of pedestrians in close contact (Distance<12ft) vs. the number of 

newly reported infection cases in NYC over time. The numbers in the circles are the daily new 

cases of COVID-19 in NYC for the given date, and the size of each circle indicates the number of 

pedestrians in close contact on that date. .............................................................................. 42 

Figure 37 Heatmaps of clustered pedestrians (distance < 12 feet). For row two to four, from top 

to bottom: Apr 2, 2020, May 13, 2020, and Jun 24, 2020. Due to the camera movement, the 

third column's camera cannot capture the right-side sidewalk on May 13 and Jun 24, so the 

related heatmaps do not contain hot zones on the right-side. ................................................. 44 

Figure 38 24-hour temporal distributions of pedestrians at one sampled location. ................... 44 

Figure 39. C2SMART COVID Mobility Survey Fact Sheet ........................................................... 48 

Figure 40 Data Ecosystem ..................................................................................................... 52 

Figure 41 Sub-board Views .................................................................................................... 53 

 

List of Tables 

Table 1 Visualization Tool Comparison ..................................................................................... 5 

Table 2: Data Collection List .................................................................................................. 13 

Table 3 Crowd Detection/Positioning Technologies for Both Outdoor and Indoor Environments 

[3] ....................................................................................................................................... 20 

Table 4 Comparison of Transit Ridership and Vehicular Traffic in 2020 and 2021 in NYC ............ 28 

Table 5 Speeding tickets per vehicle ...................................................................................... 32 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  ix 

Table 6 Percentage changes in monthly ridership levels using January 2020 as baseline, Source: 

TLC (9) ................................................................................................................................. 34 

Table 7 The top 10 complaint types in NYC311 before and after stay-at-home order ................ 39 

Table 8 COVID-19 Sociability Metrics, Selected Weekdays ....................................................... 41 

Table 9 Estimated system deployment cost (Annual cost based a 3-year estimation with 68 

cameras; data collection interval is every 30s (daily data size: 6GB); plain file storage). ............. 46 

Table 10. Summary of research outputs ................................................................................. 53 

 

 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  1 

1. Introduction 

The outbreak of the novel coronavirus COVID-19 and the ensuing restrictions in most cities around the 

world have resulted in unprecedented changes in the daily life of people. Most of these changes are 

unpredictable, for example, it was the first time ever that traffic congestion disappeared across many 

city streets. With little information on similar historic pandemics, collection of perishable mobility, 

safety, and behavior data and learning from them becomes the key for decision-makers [1]. 

Since transportation acts as a bridge connecting people to their places of interest, it is important to 

develop timely indicators to track transportation changes due to COVID-19 that allow decision makers to 

work on effective strategies immediately actionable in the current environment. Although many 

individual efforts have been made by agencies and organizations to publish open data on traffic, such as 

ridership or volumes, there is a need to have a data visualization “hub” that gather the data into one 

platform timely and translate the information into easy-to-understand visualizations and statistics. 

Since the start of the pandemic, the research team has been collecting data and investigating the impact 

of COVID-19 on mobility and sociability, including: 

• Passenger travel and freight traffic trends 

• Mode shift and usage (e.g., increase in micromobility usage)  

• Effect of social distancing policies on transit use and emissions 

• Sidewalk, crosswalk, and intersection crowd density 

• Effect of COVID-19 Policies on Transportation Systems 

• Behavior changes due to less congested roadways/transportation systems 

Data is critical to understanding the impacts and needs in times of crisis. For example, mobility is one 

good indicator of the effectiveness of Nonpharmaceutical interventions (NPIs) such as social distancing 

policies during the outbreak and reveals the recovery of the cities. However, simply collecting data is not 

enough. Data visualization is one of the best tools to understand the data and communicate findings in 

constructive ways and visualizing various types of data during the COVID-19 pandemic can help us to 

fast track the changes and develop effective strategies. 

The objective of the research is to develop an all-in-one data dashboard with interactive analytics and 

visualization of various traffic-related data sources. The data dashboard aims to allow the users to 

explore the impact that COVID-19 has had on transportation systems in affected cities with a focus on 

New York, the epicenter of coronavirus in the U.S. Information from Seattle and some cities in China 

were also explored as time lag between different cities may offer some insights into how travel patterns 

evolve in the context of COVID-19. 
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To achieve this goal, mobility data from multiple open sources, including transit and paratransit 

ridership, vehicular traffic volumes, shared bike system usage, freight volume, taxi and for-hire vehicles 

trend, crash records, and speeding tickets, were collected. The data collected in the dashboard can be 

used in various ways. For example, examine short-term passenger travel trends and behavior changes 

due to social distancing policies on transit use and mobility patterns, such as the sharp decrease in 

vehicular traffic and transit ridership, changes in bike usage, parking and freight impacts in response to 

the pandemic.  

In addition, through the fast-evolving pandemic, one term that everyone has quickly become familiar 

with is “social distancing.” Social distancing refers to efforts including avoiding mass gatherings, closing 

public places, and keeping a sufficient distance (at least 6 feet) between people to reduce disease 

spread by minimizing the physical distance and frequency of human contacts [2]. Although social 

distancing orders are mandated, it is not clear that how people are responding to these policies as 

people may still go outside for essential activities (e.g., work, grocery, etc.). In such a context, 

investigating the crowd density and actual frequency of social contact between people becomes crucial 

to measuring the effectiveness of the policy and reducing the chances of community transmission [3]. 

Moreover, when the pandemic begins to ease, volumes of people traveling within a city will start to 

increase gradually. It is also possible that the pandemic may lead to changes in how people prefer to 

travel within urban areas, potentially eschewing typically crowded modes such as public transportation 

or car-sharing, and instead choosing more solitary modes, such as walking [3]. This shift in preference 

may result in higher levels of interactions on dense city sidewalks. These behavioral changes and their 

impacts on urban environments are unpredictable and such data is usually not collected.  

Early pedestrian detection programs used manual methods, such as data collection sheets, clickers, or 

pushbutton-based detection. In recent years, improvements to sensors have enabled the presence and 

movement of pedestrians to be detected continuously, more accurately, and across a greater 

geographic area. This has been accomplished with a variety of existing and emerging detection 

technologies, including Bluetooth and Wi-Fi, infrared sensors, microwave, radar, radio beam, thermal, 

vision-based, smartphone-based, and LiDAR sensors [4]. 

To shorten the gap of collecting precise social distancing information, this study developed a data 

acquisition framework and a deep-learning approach with a pre-trained convolutional neural network to 

process public video data to quantify social distancing effects on urban street. Object detection and 

distance approximation between pedestrian pairs are applied to traffic camera videos at multiple NYC 

and Seattle locations to analyze local social distancing patterns. Real-time traffic camera data collected 

in NYC was used to demonstrate the feasibility and validity of the approach. The quantified 

heterogeneity in terms of pedestrian density, social distance distribution, temporal variations can be 

used to inform residents of the potential risk of exposure to an urban environment and assist in 

evaluating the effectiveness of relevant public interventions [3]. 
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Moreover, the crisis can magnify inequities in the existing transportation system as well as produce new 

mobility disparities for certain disadvantaged populations. For example, for people with disabilities, the 

effects of the pandemic-induced restrictions are compounded by a lack of available alternative 

transportation modes [5].  As a part of the efforts to assess the CVOID-19 impacts on transportation 

systems and travelers’ behavior, this study also highlights an agent-based simulation model’s results to 

predict the impact of NYC’s phased reopening strategies and findings from an online COVID-19 travel 

survey that was administered by the C2SMART center from July to October 2020. The survey has two 

phases and collected a total of 2,022 responses with a focus on people with disabilities (27% of the 

respondents) and old population (13% of the respondents). 

2. Dashboard Architecture 

The core of the dashboard tool relies on data automation pipeline and data analytics algorithms. The 

data automation allows an up-to-date platform with minimal infrastructure maintenance efforts and can 

be customized for solid performance on large scale data processing, machine learning and graphic-

intensive analysis. The ingestion instances inside the platform consume the raw data stream and 

evaluate it based on data accuracy, timeliness, validity and granularity. Once the evaluation is 

completed, the outcome data will be dispatched to the internal data warehouse/online tools (e.g., 

google sheets) for further analysis. The data dashboard is capable of performing real-time data analytics 

and visualization. Figure 1 illustrates the overall architecture of the dashboard. 

 

Figure 1: Overall Dashboard Architecture 
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2.1 Mobility Board Architecture 

The mobility data dashboard is a collection of interactive visualizations based on mobility data from 

multiple data sources. The visualizations are built using Tableau Public and updated through an 

automated data pipeline. 

Raw data are fetched from open data sources. Each data source has a corresponding script that is 

responsible for downloading the data, transforming it to the desired format, and uploading the processed 

results to Google Sheets or other storage engines. Most of the scripts are executed automatically in a 

weekly routine. The others are executed manually for advanced analysis. Tableau Public automatically 

synchronizes with Google Sheets and displays the result. As a data analysis and visualization tool, Tableau 

can further transform the data and enable rich interaction. The processed data may also be used for other 

research or visualization purposes. 

 

Figure 2: Mobility Board Architecture 

2.2 Visualization Tool Comparison 

When choosing a visualization solution, the first decision is between developing an application from 

scratch and using SaaS (Software as a Service) such as Tableau. A Self-developed application offers the 

highest flexibility and customization but requires time and technical skills to build. Scalability is also a 

consideration. When the volume of data grows, the application will get more complex and harder to 

maintain. Existing software like Tableau, comparatively speaking, is easy to get started and can 

significantly shorten the development cycle. This software can access common databases and file 

formats and can load relatively large amounts of data efficiently. This means that the back end is no 

longer required. At the same time, they can take on some of the data analysis work which simplifies the 

pre-processing scripts. They allow for the rapid creation of rich data interactions without writing code. 
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The major drawback is that they are less flexible. It would be difficult to optimize or extend further when 

the desired functionality exceeds what is supported. In our case, SaaS meets the need in the current 

stage, so we chose to use SaaS to build data visualizations quickly and cost-effectively. 

We compared three common visualization software: Tableau, Power BI, and Carto. In terms of 

visualization, we have a variety of data types, including time series and geographic data. Line charts, bar 

charts, heat maps, various maps, and many other types of visualization may be involved. Carto DB 

focuses on maps only and does not meet the demand. Another consideration is data connection and 

access control. Both Tableau and Power BI can connect to mainstream data sources and formats. Since 

we tend to use the free version, data used for visualization will be made public in either of the software. 

However, this is acceptable because the data must be public to enable front-end interaction. Privacy 

issues can be avoided by loading only the data needed for visualization into the software. In addition, in 

Tableau Public, although users can download the transformed data, they cannot access the original 

Google Sheets, which also helps to control data access to some extent. 

As a result, we choose Tableau Public to build the visualizations. Besides what is mentioned above, it has 

some other advantages. First, it supports Javascript API and is therefore easy to embed into web pages 

using pure front-end code. Second, it supports editing on multiple systems and platforms, including 

Windows, Mac, and browsers, making it easier to collaborate. Last, with many tutorials and a large 

community, it is easy to learn. It also has some limitations, for example, it supports loading up to one 

million rows of data. When exceeding this limit, the preprocessing scripts need to compress the data. In 

addition, it is based on Canvas and DOM rendering on the web and does not support GPU acceleration. 

When the size of data increases, performance may drop. Thus, it is not recommended to render too 

many charts on the same page. 

Table 1 Visualization Tool Comparison 

 

JavaScript 

Libraries 

Tableau Power BI Carto 

Flexibility High Medium Medium Medium 

Scalability Good Good Good Good 

Data Access 

Control 

High Medium Low Low 
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Development 

Time 

High Low Low Low 

Cost Free Tableau Public with 

limitation 

Free version with 

limitation 

Free version with 

limitation 

 

2.3 Data Automation 

2.3.1 Extract, Transform, and Load (ETL) 

Data Automation is a data pipeline that consists of three basic components: Extract, Transform, and 

Load (ETL). Extract is the process of extracting data from multiple sources. In this process, we fetch open 

data by calling the APIs or reading existing files and databases. Transform is the process of transforming 

data to the desired structure. In our case, data is often aggregated into greater temporal and spatial 

granularity to reduce network time and rendering time or grouped by year to compare the changes over 

time. Load is the process of loading the transferred data into a Database or Data Warehouse. For 

visualization purposes, most of the data is loaded to Google Sheets which is connected to Tableau. They 

may also be used for other research purposes and may be stored in databases like MongoDB and 

PostgreSQL, which are more flexible and supports richer data formats and larger amounts of data. 

 

Figure 3: Extract, Transform, and Load (ETL) Process 

 

Automation can help to scale up the project when the number of datasets grows bigger. At the same 

time, it also brings extra development and maintenance costs. In this project, we started by manually 

performing the extract, transform, and load process, and then automated the pipeline by harnessing 

Tableau’s ability to synchronize data from Google Sheets. Right now, most of the pipelines are fully 

automated under the control of a job scheduler. 
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2.3.2 Development Process 

During the development of the COVID-19 dashboard, we’ve worked on several iterations to update the 

dashboard from manually process to automatic process. In the early stage of the development, many 

manual updates were used to display the data timely. Later, with the increasing variety of the data, 

semi-automatic and fully automatic process were applied to reduce the efforts needed for frequent 

maintenance.   

In manual updates (Figure 4), there are two places where manual intervention is required. One is 

running the script for Extract and Transform (ET). The other is Transform and Load (TL), updating the 

Tableau Workbook’s data source with the result. When multiple data sources need to be updated 

frequently, such an update would be cumbersome. 

 

Figure 4: Manual Update Process 

In semi-automation, Extract and Transform (ET) / Transform and Load (TL) are combined into one script 

(Figure 5). Since Tableau supports synchronization from Google Sheets, it is possible to automate the 

upload process. The transformed data are written to Google Sheet programmatically through Google 

Sheets API. 

 

Figure 5: Semi-automation Update Process 
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In full automation, ETL is completely programmed. We use a job scheduler to execute the data 

processing script in a weekly routine (Figure 6). The script will fetch the latest data, transform them into 

the desired format, and write the result to Google sheet. Tableau dashboards that are connected to the 

sheets will then be updated. 

The task scheduler runs under monitoring. From the admin interface, we can see if the update is 

successful and when it happened. If something goes wrong, we can quickly find the cause through logs 

and re-execute the ETL process in a few clicks. 

All the weekly updated dashboards are fully automated. Ideally, they do not require any human 

intervention. However, since the data format and API may change when the open datasets are updated, 

inspections and maintenance are still required. Current practice the team is using is to perform a bi-

weekly inspection. Moreover, some of the visualizations are updated in a semi-automation manner, as 

the input data is more complex and requires human intervention for advanced analysis. These data are 

updated less frequently (e.g., bi-weekly or monthly).  

 

Figure 6: Full Automation Update Process 

 

3. User Interface and Sub-boards 

3.1 Homepage and User interface Design 

The dashboard is implemented as a component of the C2SMART home page. The framework of the 

dashboard is written in JavaScript and CSS. Tableau Visualizations are embedded on the page Tableau 

Javascript API which allows dynamically loading and resizing visualizations. The design of the user 

interface of the COVID-19 Data Dashboard has iterated with three versions. Version 1.0 homepage used 
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a direct combination of multiple Tableau dashboards (Figure 7). Although version 1.0 is visually 

appealing, with the increase of the collected data, the loading speed of the homepage became slow.  

 

Figure 7 C2SMART COVID-19 Data Dashboard Homepage (Version 1.0). 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  10 

 

Figure 8 Lading Page of the Mobility Sub-board (Version 1.0 & 2.0). 

Version 2.0 of the homepage removed the Tableau dashboards from the home page, thus improved the 

loading speed of the dashboard. However, since no up-to-date information was shown on the 

homepage, users need to click into each sub-board to see when the data was last updated (Figure 9). 

The archived version of the dashboard (version 2.0) can be viewed at 

https://archive.c2smart.engineering.nyu.edu/covid-19-dashboard/. 

 

https://archive.c2smart.engineering.nyu.edu/covid-19-dashboard/
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Figure 9 C2SMART COVID-19 Data Dashboard Homepage (Version 2.0). 

Finally, the team updated the dashboard to version 3.0 with a new design of its homepage that 

combines certain up-to-date COVID statistics along with a new categorization of mobility-related data to 

avoid redundant navigations through the dashboard (Figure 10). The latest dashboard (version 3.0) can 

be visited at https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/. 

The dashboard contains two main sub-boards: mobility and sociability. The mobility board presents 

multi-data views such as weekly vehicular traffic or transit ridership while the sociability board presents 

average and maximum intersection crowd density and pedestrian social distancing compliance rates 

based on information extracted from 68 real-time traffic cameras. In addition, the dashboard also 

connects to C2SMART’s MATSim agent-based simulation virtual testbed [6] that provides network 

performance and emission evaluation for reopening phases and C2SMART COVID-19 Travel Survey that 

collected responses nationwide about travel behavior changes. 

https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/
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Figure 10 C2SMART COVID-19 Data Dashboard Homepage (Version 3.0). 

In version 3.0, the front-end implemented a responsive design using the grid layout. Dashboards are 

grouped into different categories. Users can see snapshots of each category and select the topic of 

interest. In each category, they can switch between different visualizations by clicking on the tabs. Only 

one worksheet is rendered on the page at a time to guarantee performance. 

Although Tableau also has the functionality to display multiple worksheets (single-view visualizations), 

by using dashboards (collections of worksheets) and stories (a sequence of worksheets or dashboards), 

which is used in the initial design of the dashboard (version 1.0). We decided not to use this function in 

version 2.0 and 3.0 and manually implement our dashboard based on the following reasons. First, 

displaying many worksheets on one page would slow down the data loading and rendering speed. 
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Second, since the data is from multiple sources and many of them are irrelevant, combining them into 

one tableau workbook brings unnecessary complexity to data management. Finally, the customized 

interface allows for better responsiveness and easier sharing of worksheets. 

For users to read the latest data at first glimpse, we set up three panels: Reported Crashes, Speeding 

Tickets, and Estimated Subway Ridership, which show the most recent data aggregated by week and 

how it changed compared to the previous week or before the pandemic. These values are updated 

automatically as a by-product of the automated data pipeline. When performing weekly updates, there 

is a script that aggregates the data and stores the result in the database of the web page. This helps to 

accelerate data fetching and alleviate the burden of the storage engine for the original data. Users can 

investigate the corresponding visualizations by clicking on these panels. 

3.2 Mobility Data Dashboard Data Collection and Visualizations 

Multiple public data sources from NYC, Seattle, Chicago and various cities in China were consolidated 

into the mobility dashboard. Table 2 lists the collected data. 

Table 2: Data Collection List 

Data Category Name/Data Source Region 

Vehicular Traffic Weekly Vehicle Traffic via MTA Bridges and Tunnels, by 

Plaza 

NYC 

Vehicular Traffic Overall Vehicle Traffic via MTA Bridge and Tunnels NYC 

Vehicular Traffic/Freight Monthly Vehicular Traffic at PANYNJ tunnels and bridges 

(All Crossings) 

NY/NJ 

Transit MTA Subway Ridership Trends NYC 

Transit MTA Bus Ridership Trends NYC 

Transit MTA Bus Speed Trends NYC 

Transit MTA Long Island Rail Road Ridership Trends NYC 

Transit MTA Metro North Railroad Ridership Trends NYC 

Paratransit MTA Access-A-Ride Ridership Trends NYC 

Freight Weigh-in-motion stations NYC 

Speed & Travel Time NYCDOT real-time traffic speed map NYC 

Speed & Travel Time Travel time (Virtual sensors) NYC & NJ 

Risk Indicators NYPD crash reports NYC 

Risk Indicators Camera violations – School zone speeding NYC 

Risk Indicators 311 service requests NYC 

Micromobility Citibike ridership and spatial trends NYC 

Taxi & TNC Yellow, green taxi and for hire vehicle trips NYC 
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Social Distancing, 

Pedestrian Density 

Real-time traffic cameras NYC & Seattle 

Speed & Travel Time Travel time (Google API) Seattle 

Vehicular Traffic Traffic volume (WSDOT detectors) Seattle 

Micromobility SDOT bike/pedestrian counts Seattle 

Transit Public transit demand Seattle 

Taxi & TNC Taxi Ridership Chicago 

Transit Subway Ridership Six cities in 

China 

MTA = Metropolitan Transit Authority, PANYNJ = Port Authority of New York and New Jersey, TNC = 

Transportation Network Company 

Depending on the data, different performance metrics based on their temporal trend or spatial 

distribution are then generated and visualized. Figure 11 to Figure 17 illustrate some examples of the 

sub-boards. It is worth noting that these sub-boards allow users to perform interactive data analytics. 

For example, besides showing the overall daily traffic trend, temporal comparison of selected dates can 

be performed in the Seattle traffic volume trend sub-board (Figure 15).  

 

Figure 11 NYC Subway Ridership Sub-board. 
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Figure 12 NYC City-wide Speed Map Sub-board. 

 

Figure 13 NYC Speeding Ticket Sub-board (June 2020). 

 

Figure 14 NYC Taxi Trip Duration Sub-board. 
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Figure 15 Seattle Traffic Volume Trends Sub-board (SR 99 at Mercer Street). 

 

Figure 16 China Subway Sub-board. 
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Figure 17 Chicago Sub-board. 

3.3 Sociability Board Based on Computer Vision 

This sociability board presents the findings from the deep-learning-based video detection system that is 

able to quantify pedestrian and vehicle densities and sociability indicators from publicly available real-

time traffic cameras in NYC and Seattle. Perishable data was collected for 68 locations in NYC and 1 

location in Seattle, including locations near hospitals, subway stations, and meal distribution centers. 

Besides temporospatial changes in pedestrian densities, we also quantify the safety rate of social 

distancing (i.e., % of people following social distancing guidance). Due to the numerous burdens of safely 

deploying any effective field data collection approaches during the pandemic, there are still few efforts to 

obtain precise information on social distancing patterns of pedestrians in urban environments.  

A deep-learning approach with a pre-trained convolutional neural network and customized post-

processing filters was designed to mine the massive amount of public video data captured in urban areas. 

As mentioned in chapter 3, the results quantify pedestrian density and microscopic pedestrian social 

distancing patterns using a generalized real-distance approximation method. Quantifying pedestrian 

density and social distancing adherence will provide decision-makers with a better understanding of the 

new norm of urban mobility amid the pandemic, and what patterns might hold for individual mobility 

post-pandemic or in the event of a future pandemic. 

Compare with the current usage of traffic cameras (often used for monitoring and passive detection for 

incident management), the proposed approach leverages existing transportation infrastructures and its 

benefits include: 1) build on existing resources to reduce agency costs, 2) no additional cost and safety 

risk for field checks as it uses reference-free distance approximation, 3) enable real-time object 

detection for different classes (pedestrians, cars,  buses, trucks and cyclists) to assist both system and 

local monitoring, 4) account for COVID-19 impacts such as risk indicator on social distancing and 5) can 

be easily adopted to other cities/states and expanded to other use cases such as traffic counts, incident 

and illegal parking detection, and lane occupancy monitoring. Figure 18 presents the user interface of 

the sociability board. 
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Figure 18 Sociability Board. 
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4. Measuring Social Distancing 

4.1 Related works 

Social distancing practices have been proved to be effective Nonpharmaceutical Interventions (NPIs) 

during the COVID-19 pandemic. For instance, De Oliveira, Silvano B., et al. [7] showed that the proportion 

of individuals staying home had a strong inverse correlation with the time-dependent reproduction 

number R(t) (rho<-0.7), which is a measure of disease transmissibility using aggregated mobile phone 

data. However, how to measure social distancing remains a challenge. 

Instead of gathering data from conventional survey approach, recent advancements in information and 

communication technologies have made it possible to collect empirical data relevant to human behavior 

and contacts in real-world conditions. Solutions such as tracking WiFi and Bluetooth traces [8, 9], 

smartphone applications [10-12], and active radio frequency identifications devices (RFID) or other 

wireless sensors [13-16] have been lately employed to collect the close proximity data of human-to-

human interactions [3]. Nevertheless, many of these applications are better suited for indoor localization 

and using them in dynamic outdoor environments may reduce their accuracy. Moreover, there are 

significant concerns about the scalability and privacy protection of such applications [9, 10]. 

Primary crowd detection technologies that can be used for both outdoor and indoor environments are 

summarized in  

 

 

Table 3. Technologies such as LIDAR or Thermal sensors have a medium to high installation or equipment 

cost, and most of them usually integrate with existing systems, such as mobile phones and wearable 

devices (e.g., WiFi, Bluetooth, cellular, UWB, inertial sensors, visible light). A drawback of such approaches 

is that the device always needs to active some operational modes (e.g., Bluetooth mode), and the position 

accuracy can drop when the mobile phone is placed inside a pocket or bag [17]. Moreover, the temporal 

resolution (e.g., detection time) of these technologies is not sufficient for measuring many close contacts 

within a short duration [15, 18, 19] and its nature of deploying new hardware in the field or software on 

the phone makes it infeasible to quickly adapted to the current fast-evolving COVID-19 crisis. Therefore, 

very little precise data exist on COVID-19 related social distance behavior, especially continuous data 

combining environment facts and high temporal resolution. 
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Table 3 Crowd Detection/Positioning Technologies for Both Outdoor and Indoor 

Environments [3] 

Technology Range Cost Position Accuracy Privacy 

Wi-Fi 
Outdoor: 100m 

Indoor: 50m 
$ 

Medium  

(1m-5m) 
Low 

Bluetooth 
Outdoor: 55-78m 

Indoor: 15-35m 
$ 

Medium  

(1m-2m) 
Low  

Cellular Short to Long $ High (Less than 50cm) Low to High 

Ultrawideband 

(UWB) 
Short to Medium $ High (Less than 10cm) High 

Radar/LIDAR 100m $-$$$ High High 

Seismic sensor Short (~15m) $$ High High 

Computer Vision 
Depends on the 

cameras 
$–$$ Low to High Low 

Infrared/Thermal 

sensor 

IRP 1-10m, 

THC a few km 
$–$$$ Medium Low to high 

Inertial sensors Not applicable $ Medium (Less than 1m) High 

Visible light Short $ High (1 cm – 20 cm) High 

Note: Synthesized based on References [17] [20] and [21] 

Among the technologies discussed in  

 

 

Table 3, computer vision offers a low-cost, appealing alternative for pedestrians detection [22] or safety 

assessment [23-25] as surveillance cameras have already installed in many cities. This became important 

as Lobe et al. [26] pointed out that although the pandemic provides a unique opportunity to study the 

crisis itself, social distancing mandates are restricting traditional in-person investigations of all kinds. For 

example, the Institutional Review Board (IRB) suspended all in-person human subjects research activities 

in response to the pandemic. The use of computer vision technology, in particular of object detection, 

provides a free-of-risk approach for data collection during the crisis. It can turn cameras into "smart" 
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sensors, which are capable of detecting crowd density and identifying whether people comply with 

social distancing requirements or not in real-time [17].  

Two types of approaches that are commonly used in the computer vision domain include the following: 

• Region-based approach (e.g., Fast-RCNN [27], Faster-RCNN [28], Mask RCNN [29], and 

RetinaNet [30]): This approach detect humans from images in two stages, including the region 

proposal and the procession according to the regions [31]. Although region-based approaches 

have a high detection accuracy, its applications may be limited due to its high complexity.  

• Unified-based approach: This approach includes the You Only Look Once (YOLO) model [32], its 

improved versions [33-35], and Single Shot Multibox Detector (SSD). These approaches map the 

image pixels to bounding boxes and class probabilities to detect humans or objects and usually 

is faster than region-based methods [17].  

Combining with distance approximation methods, these computer vision techniques can identify 

whether the number of gathering people complying with social distancing requirements or not, 

therefore, help in revealing human contact patterns and effectiveness of the social distancing policies 

[3]. 

Moreover, most relevant recent studies used aggregated mobility data with the assumption of 

homogeneous behavior within a city, state, or county [7, 36, 37]. Although such an approach is helpful 

for macro-level analyses, it is possible that different cities or regions may have non-synchronized social 

distancing patterns in open urban spaces. The computer vision-based approach leveraging existing data 

from cameras in cities is feasible to provide detailed spatiotemporal heterogeneity and dependence of 

social distancing patterns at a micro-level [3]. 

4.2 Reference-Free Video-to-Real Distance Approximation-Based Urban Social 

Distancing Analytics 

For the sociability board, the team developed a novel video-to-real distance approximation-based 

method without the use of field measurement and homographic computing. By calculating the specific 

real-pixel distance rate for each person with a fixed real-height assumption and the pixel height 

obtained from the videos, the technology can approximate the distance between pedestrians without 

any facial features or other personally identifiable information. This generalized, reference-free distance 

approximation method allows the implementation of large-scale social distance calculations under 

different environment conditions (e.g., cameras with different angles). In the case of measuring social 

distancing, if the distance is less than a threshold of 6 feet, the event is flagged and recorded. Figure 19 

presents the overall workflow of the proposed methodology. The program is developed using Python 

and the primary machine learning modules are supported by open-source libraries, including 

TensorFlow [38], Keras [39], and ImageAI [40]. 
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Figure 19 Proposed workflow of collecting and mining pedestrian social distance data from 

publicly available surveillance video data [3]. 

4.2.1 Pre-trained Object Detection Model 

The object detection model detects objects (e.g., pedestrians) from each frame and finds boxes around 

the objects. The detector then returns a list of predicted potential classes of each object with 

probabilities and classifies the object into a relevant class type based on the highest probability. A pre-

trained pedestrian detection model is selected for use in this study as pre-trained state-of-the-art object 

detection models are shown to have good generalization capability allowing efficient deployment to 

new environments, even with different video resolutions or camera angles [41, 42]. The Non-Max 
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Suppression method [43] with a fine-tuning threshold is used to control the output balance between 

false positives and false negatives by setting the minimum acceptable probability of identified classes.  

4.2.2 Object Detection Model Selection and Evaluation 

The performances of three well-known state-of-the-art object detection models, YOLOv3, RetinaNet, 

and Mask RCNN are compared with ground truth data in two selected intersection to specify the best 

model parameters for the subsequent multi-location analysis. Both RetinaNet and Mask RCNN used 

ResNet-101 as the network architecture. These models are all pre-trained using the COCO dataset [44]. 

The comparison is also used to validate the detection accuracy of the backbone models on the existing 

camera systems used in this study. 

Each video contains four hours of surveillance data with a 30-second collection frequency. Precision-

Recall (PR) curves were generated by tuning the non-max suppression threshold for the evaluation 

(Figure 20). A high area under the PR curve shows that the detector is returning accurate results (high 

precision) and a majority of all positive results (high recall). Based on computing costs and model 

performence, the YOLOv3 was selected for subsequent analysis in this study. The final detection 

accuracy using YOLOv3 for pedestrian is 89.18%, with a precision of 85.96% and recall of 84.32%.  

 

Figure 20 The performances of the three models tested at selected locations. 

4.2.3 Post-Processing Filters 

Four post-processing filters are developed for this study to improve detection accuracy and eliminate 

detection errors such as duplicate detections, oversized detections, or detection at impossible locations.  

These post-processing filters are as follows: 
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• Customize detection area: This filter is used to remove any detected objects that appear in 

irrelevant or inaccessible areas (e.g., sky/building, parked lanes).  

• Intersection over Union (IoU) based filter to remove overlapped bounding boxes for the same 

object: An Intersection over Union (IoU) based filter is developed to remove multiple bounding 

boxes generated for the same object, e.g., identifying a truck as both truck and a car. For areas of 

two bounding boxes B1 and B2, the IoU is calculated by: 

IoU =
B1 ∩ B2

B1 ∪ B2
                                                                          (1) 

This study uses an IoU = 0.8 (i.e., a bounding box with a lower-class probability is removed when 

the intersection over the union of two overlapped bounding boxes is larger than 80% of the 

union.)  

• A position filter to identify significant height difference at near hyper-plane: A significant height 

difference of two pedestrians standing close to each other may affect due to the mechanism that 

the algorithm is built-on [3]. Therefore, a position filter is deployed to identify if two pedestrians 

are close in proximity. Given that all pedestrians are perpendicular to the same horizontal plane 

(the earth), the vertical position of proximate pedestrians should be similar in an image. The 

related objects are considered close if the vertical position difference between the bottom lines 

of detected bounding boxes is lower than a threshold. The level of vertical position difference is 

calculated as: 

Diff1,2 =
|ybottom

1 − ybottom
2 |

min (hp
1 , hp

2)
                                                                (2) 

where the ybottom
1  and ybottom

2  are the vertical locations of the bottom line of bounding boxes 

and hp
1  and hp

2  are the estimated pixel-heights of each bounding box. If Diff is lower than 0.25, 

two detected pedestrians are considered close to one another, and the one with the higher pixel 

height will be assumed to have a real heigh equal to the pre-set height (5.74 feet in this study). 

• Remove incorrect size: This filter removes any large bounding boxes that are larger than 75% of 

the size of the input image. 

4.2.4 Real Distance Approximation 

The main challenge of detecting social distancing patterns from surveillance videos is the accuracy of the 

measurement of the actual distance between pedestrians due to the perspective effect and a lack of 

references [3]. One common solution is to compute a homograph, which is a matrix represents the 

transformation between two planes, to morph the video frames from perspective view into a top-

bottom view, then using preset objects with known measurement or existing objects with available 

measurement as references to compute the distances in the transformed frames [45]. Traditional 
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approaches to obtain reference distances include field visits, measurements from maps or civil 

infrastructure documents, and chessboard-like or point matrix calibration plates. 

It may be challenging to get a reliable reference to calculate distances using camera feeds as cameras 

installed at different locations usually have different views of perspective and may be repositioned at 

different times, which demands a generalized method that can be used to measure distance from 

multiple cameras. With these complications, we propose a novel method  to measure distance without 

the use of field measurement and homography computing.  

Figure 21 illustrates  the proposed real distance approximation method.  

 

Figure 21 Proposed real distance approximation method. 

The steps of this method are presented as follows: 

• Step 1: Slice the image into several hyperplanes, which are perpendicular to the horizontal plane 

and the vanishing lines. Because of the perspective effect, the number of pixels in the image 

corresponding to a single real-world length can vary on different hyper-planes. In other words, each 

hyper-plane will have a specific real-pixel distance rate (RP-rate)—the "further" the hyper-plane, the 

larger the RP-rate. 

• Step 2: It is assumed that each person in the image is perpendicular to the horizontal plane and has 

the same height ℎ𝑟. Detection results may be affected by this height assumption, but because of the 

size and resolution of the videos, the impact of the height assumption is acceptable.  
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• Step 3: We identify the centroids of all the bounding boxes of all detected pedestrians and estimate 

the pixel-distance 𝑙 between the centroids of bounding boxes for each pair. The pixel-height ℎ𝑝
𝑖  of the 

bounding box is used as the pixel-height of the detected person 𝑖. For each pedestrian pair, it is always 

possible to find a "box" with four hyper-planes; two pedestrians belong to two of the hyper-planes, 

and the other two hyperplanes are perpendicular and intersect with the pedestrians ( 

• Figure 21 upper left). The generalized RP-rate 𝑟𝑅𝑃
𝑖  for any person 𝑖 can be represented as: 

𝑟𝑅𝑃
𝑖 =

ℎ𝑟

ℎ𝑝
𝑖

                                                                            (3) 

• Step 4: We then slice the line between two centroids into small enough segments with a small pixel-

distance ∆𝑝, and use each segment's RP-rate 𝑟𝑅𝑃 to calculate the real distance of that segment ∆𝑑: 

∆𝑑 = ∆𝑝 ∙ 𝑟𝑅𝑃                                                                         (4) 

Thus, the distance between person 𝑎 and 𝑏 can be calculated using the following formula: 

𝐷𝑎𝑏 = ∫ ∆𝑑
𝑏

𝑎

= ∫ 𝑟𝑅𝑃
𝑖 𝑑𝑝

𝑏

𝑎

                                                                 (5) 

Because the hyper-planes are perpendicular to vanishing lines, and the vanishing lines are straight 

lines, the transfer process of pixel-height ℎ𝑝 between two hyper-planes is correlated with pixel 

distance linearly, and the formula is shown below: 

ℎ𝑝 =
ℎ𝑝

2 − ℎ𝑝
1

𝑙
∙ 𝑝 + ℎ𝑝

1                                                                      (6) 

Where ℎ𝑝
1  and ℎ𝑝

2  are the estimated pixel-heights of each person, 𝑙 is the estimated pixel-distance 

between two persons, and 𝑝 is the variable that indicates the pixel distance.  

• Step 5: Finally, the real distance between two centroids can be calculated by combining equation (3), 

(5) and (6):  

𝐷 = ∫ 𝑟𝑅𝑃
𝑖 𝑑𝑝

𝑙

0

= ∫
ℎ𝑟

ℎ𝑝
𝑑𝑝

𝑙

0

= ∫
ℎ𝑟

ℎ𝑝
2 − ℎ𝑝

1

𝑙
∙ 𝑝 + ℎ𝑝

1

𝑑𝑝
𝑙

0

                                     

= ℎ𝑟 ∙

𝑙𝑜𝑔 (
ℎ𝑝

2 − ℎ𝑝
1

𝑙
𝑝 + ℎ𝑝

1)

ℎ𝑝
2 − ℎ𝑝

1

𝑙

|
|

𝑝=0

𝑝=𝑙

                                                                   

= ℎ𝑟 ∙
𝑙𝑜𝑔(ℎ𝑝

2)

ℎ𝑝
2 − ℎ𝑝

1

𝑙

 −   ℎ𝑟 ∙
𝑙𝑜𝑔(ℎ𝑝

1 )

ℎ𝑝
2 − ℎ𝑝

1

𝑙

                                                                     

= ℎ𝑟 ∙ 𝑙 ∙

𝑙𝑜𝑔 (
ℎ𝑝

2

ℎ𝑝
1 )

ℎ𝑝
2 − ℎ𝑝

1
                                                                                       (7) 
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It should be noted that the transfer of the RP-rate is not linear. To simplify the computation, we 

assume that the RP-rate is transferred linear, so the equation (7) can be roughly simplified into: 

𝐷 = (
ℎ𝑟

ℎ𝑝
1 +

ℎ𝑟

ℎ𝑝
2) ∙

𝑙

2
                                                                      (8) 

The K-D Tree algorithm [46], a space partitioning data structure for organizing points in a K-

Dimensional space, is applied to quickly identify all pedestrians in close contact. The program will 

generate a blue line between the pair of pedestrians who are not following social distancing 

guidelines.  

 

 

5. Mobility and Sociability Trends During COVID-19 

5.1 New York City 

5.1.1 Transit and Vehicular Traffic 

The closing of essential businesses and stay-at-home policies caused an immediate direct impact on the 
usage of Metropolitan Transportation Authority (MTA) mass transit services, the largest public transit 
authority in the US, which typically carries over 11 million transit riders on an average weekday. Mobility 
board data collected through MTA shows steep declines in both transit ridership and vehicular traffic in 
the beginning of the pandemic. The decline rates reached up to 94% in peak transit ridership as of 
March 23rd, and up to 72% in vehicle traffic through MTA bridges and tunnels as of March 29th, 
compared to the same date/week in 2019 (Figure 22). Table 4 shows the comparison of transit ridership 
and vehicular traffic in 2020 and 2021 in NYC.  
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Figure 22 Transit Ridership Trends 

 

Table 4 Comparison of Transit Ridership and Vehicular Traffic in 2020 and 2021 in NYC  

Transit Subway Bus Commuter Rail 

(LIRR) 

Commuter Rail 

(MNR) 

Access-a-ride 

Worst week in 2020 -94% -79% -97% -95% -78% 

Week of Jan 25, 2021 -70% -56% -76% -78% -30% 

Vehicular Traffic Via MTA bridges & 

Tunnels 

Via PANYNJ crossings Via BQE Queensbound 

Worst week in 2020 -72% -61% 

(-30% Truck) 

-37% 

(-28% Truck) 

Week of Jan 25, 2021 -17% -11%* 

(-1% Truck)* 

-4%** 

(+1% Truck)** 

*Based on monthly data in January 2021. ** Based on weigh-in-motion data in November 2020. 
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5.1.2 Travel Time and Speed 

Travel time on corridor 495 that connects Long Island and New Jersey (NJ) via Queens and Manhattan in 
NYC was analyzed in Figure 23. This sub-board uses virtual sensor data collected through crowdsourcing 
map applications [47]. A flatter travel time pattern of near free-flow speeds was observed following the 
stay-at-home orders, instead of typical spikes of commuter peaks (Figure 24). Increased traffic volume 
and travel time were observed in the week of May 4, 2020, indicating the start of the recovery period 
for NYC. Corridor 495 travel times in the first week of December 2020 were still about 17% lower 
(Eastbound) and 24% lower (Westbound) compared to pre-pandemic levels (Feb 2020).  

 

Figure 23 Travel time on 495 corridor (Flushing Meadows Corona Park to NJ Turnpike Exit 16E) 

 

Figure 24 Hourly Travel Time Comparison on the 495 corridor 
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The speed maps in Figure 25 display the median travel speeds on major arterials/expressways of NYC as 

well as the Midtown Manhattan street network. With less traffic in the city during the outbreak, most 

roads and highways had higher speeds in the third week of April 2020, compared to the same week in 

February 2020. Average traffic speeds from 8AM to 6PM on north-south avenues between 34th and 

57th Streets in Midtown Manhattan are shown in Figure 26. The average traffic speeds on avenues were 

up 108% in the third week of April, 2020, with a range from 22% to 253% on different avenues, 

compared to average traffic speed in the third week of February 2020. The average traffic speed on 

major crosstown streets, including 14th, 23rd, 34th, 42nd, and 57th Street, saw a 2-6 mph increase in the 

third week of April 2020 compared to the same week in February 2020. 

    

Figure 25 NYC Citywide average speeds (Citywide average speeds February 17-21, 8AM to 

6PM (left), Citywide average speeds April 20-24, 8AM to 6PM (right)) 
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Figure 26 Midtown Avenue speeds, 8AM to 6PM 

5.1.3 A Surge in Speeding 

An increase in traffic speed and school zone speeding tickets was observed with some city streets 

operating at or near free-flow speed during COVID-19 crisis. For example, on April 15, 2020, during the 

traditional morning peak hour, 8.3% of the 145 local road segments where data is available, had an 

average traffic speed over the city speed limit of 25 mph. 28% of them were over 20mph, while only 

3.4% had an average traffic speed over 20mph in February, before the pandemic. Based on the data 

collected from Open Parking and Camera Violations [48], the average number of daily school zone 

speeding tickets issued remains 70% higher in July 2020 and 62% higher in the first two weeks of August 

2020 compared with pre-pandemic levels in 2020. Speeding violations are also likely to occur 

repetitively: 23% of ticketed vehicles received more than one speeding ticket in June, and these vehicles 

contributed to 44% of the total speeding tickets. Crashes remain low but the severity of crashes 

measured by fatalities is up. Unsafe speed was listed as the primary cause for half of the traffic fatalities 

in NYC in April (7 out of 14) and 42% of the fatalities in May (5 out of 12) according to NYPD’s Motor 

Vehicle Collision reports [49]. Figure 27 presents the time series of weekly numbers of speeding tickets 

in 2020. 
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Figure 27 School Zone Speeding Ticket Trend in 2020 (weekly sum) 

After examined unique plate IDs, speeding tickets per vehicle is summarized in Table 5. 14%, 29%, and 

23% of the vehicles received more than one speeding ticket in February, April, and June 2020, 

respectively, and these vehicles contributed to 27%, 54%, 44% of the total speeding tickets in February, 

April, and June 2020, respectively.  

Table 5 Speeding tickets per vehicle 

  >1 tickets >3 tickets >5 tickets >10 tickets 

Feb 13.6% 0.8% 0.1% 0.0% 

Apr 29.1% 5.6% 1.7% 0.2% 

Jun 22.8% 3.2% 0.8% 0.1% 

 

5.1.4 Freight Traffic 

Weigh-in-motion (WIM) stations from C2SMART’s testbed on the Brooklyn-Queens Expressway (BQE) 

showed changes in freight traffic for both Queens bound (QB) and Staten Island bound (SIB). A 37% 

reduction in overall traffic and 28% reduction in truck traffic were observed in the worst week in 2020 

(Table 4). With the rebound of the traffic, as of August 16, WIM data indicated that average daily traffic 

(ADT)was down by only 2% for Queensbound (QB), and 4% for Staten Island-bound (SIB) traffic in the 

first two weeks of August, as compared with February 2020. Average daily truck traffic (ADTT) for SIB 

was down by 8% and is 5% higher QB in August compared to February. The average vehicle speed on 

BQE remained around the same level in the first weeks of August compared to June but is still 8% higher 

for SIB and 2% higher for QB, as compared to February. 
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5.1.5 Micromobility 

During the first two months after the outbreak, bikeshare ridership remains down with the exception of 

the first 12 days of March. Ridership patterns did change, with 15% fewer Friday and Saturday trips and 

a 20% increase in average trip duration in March 2020 compared to the same month last year. Starting 

from April, cycling continued to increase. According to Citi Bike system data [50], on average, there were 

67,422 rides in NYC per day in July 2020, a 9% increase compared to June 2020 and a 71% increase 

compared to February 2020 (Figure 28). 

   

Figure 28 Citi Bike Ridership Trends (Citi Bike Daily Ridership (left), Citi Bike Monthly 

Ridership Change (2020 vs 2019, NYC only (right)) 

5.1.6 Taxi and For Hire Vehicles 

Based on the NYC Taxi and Limousine Commission (TLC) data, it showed a sharp decrease in yellow taxi, 

green taxi, FHV, and high volume for-hire services (HVFHS) usage from the second week of March 2020 

onwards. FHVs include Community Cars (aka Liveries), Black Cars, and Luxury Limousines, whereas 

HVFHS include records from Uber, Lyft, and Via. At the beginning of April 2020, trips in all TLC licensed 

vehicles dropped 84% compared to the same time last year. According to a report by TLC (8), in April 

2020, 28,893 TLC drivers were on the road, compared with 122,076 TLC drivers in April 2019 (a 76% 

drop). The total number of monthly rides for yellow taxis dropped by 96%, 92% for green taxis, 79% for 

FHVs, and 76% for HVFHS in April compared to January 2020 (Table 6). The number of rides gradually 

rebounded in May and June but are still 60-90% lower than those in January 2020. In February, HVFHSs 

completed, on average, nearly 750,000 trips per day, Yellow Taxis completed 217,000 trips per day, and 

Green Taxis performed 14,000 trips per day. From March through April 2020, trips to parts of the city 

with hospitals increased as a percentage of all pick-ups, while trips to and from airports decreased (8). 
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Table 6 Percentage changes in monthly ridership levels using January 2020 as baseline, 

Source: TLC (9) 

Month Yellow Taxi Green Taxi HVFHS FHV 

Feb -2% -11% 6% -14% 

Mar -53% -50% -35% -36% 

Apr -96% -92% -79% -76% 

May -95% -87% -70% 
 

Jun -91% -86% -63% 
 

 

Figure 29 shows the spatial distribution in yellow taxi, green taxi, and HVFHS rides from March to June 

2020. Green taxi rides ending in the upper Manhattan zones of Central Harlem North, Hamilton Heights, 

and Washington Heights North increased in June 2020. HVFHS had seen the most recovery in ridership 

levels since the start of the pandemic at JFK airport, Forest Hills, and Middle Village, Queens.  
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Figure 29 Spatial distributions of taxis and HVFHS  

The average distance of a completed rides has increased during the pandemic (Figure 30). This, coupled 

with the drop in ridership, points at a trend where people are taking longer trips, but perhaps only when 

most necessary during the early stage of the pandemic. As ridership numbers increase, the average trip 

distance also become shorter. The average duration of a trip increased slightly during the pandemic and 

is gradually seen to be nearing pre-pandemic levels by June 2020 (Figure 30). The average number of 

passengers decreased since the start of the pandemic, especially for green taxis (from 3.4/vehicle in 

January 2020 to 1.4/vehicle in April 2020) - this might be because the passengers are suggested to not 

sit beside the driver in any taxis or FHVs, to adhere to social distancing norms.  
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Figure 30 Yellow/Green Taxi Trip Distance and Trip Duration 

5.2 Seattle 

Seattle was the first major U.S. city to experience the drastic effects of the COVID-19 crisis. However, 

health concerns have abated quicker as compared to NYC, and data in 2020 suggested that Seattle may 

have begun returning to normal transportation conditions. Observing Seattle data may help to indicate 

what is to come in NYC. 

5.2.1 Corridor Travel Time and Traffic Volume 

Figure 31 illustrates the travel times on Interstate-5 (I-5) that goes through downtown Seattle area. The 

critical date analysis demonstrated that similar to NYC, the typical spikes of commute peaks disappeared 

since the release of stay-at-home order on March 23, 2020, indicating most people reacted immediately 

to the order [51]. Due to less traffic, the reliability of travel time became higher: the standard deviation 

of daytime travel time of the corridor reduced to 0.67 minutes in late April 2020 compared with 6.43 

minutes in late February 2020. 
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Figure 31 Hourly travel time on I-5 in Seattle (Hourly travel time in March and April (left), 

Critical day analysis for I-5 travel time (right) 

Traffic volumes at three freeways locations (I-5 downtown Seattle, I-5 NE of Green Lake Park, and SR-

520 toll bridge) showed a consistent drop in traffic volume in March, followed by a gradual increase in 

April 2020. Figure 32 presents an example of the daily traffic volume trends on I-5 in downtown Seattle. 

Using the same week of previous year as a baseline, traffic volume at the I-5 Downtown Seattle station 

dropped to its lowest level -46.91% in the week of March 30, 2020, and gradually increased to -41.95%, -

35.50%, and -26.31% in the weeks of April 13, 27, and May 11, 2020, respectively. Similar trends have 

been observed for the other two stations.  

 

Figure 32 Traffic volume on I-5 (downtown Seattle) 
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5.2.2 Transit Ridership  

According to Transit app data, public transit demand of Seattle began to decline on February 29, 2020, 

the same day when Washington state reported the first COVID-19 death [51]. The demand continuously 

decreased until March 26 (a 79% drop compared to a normal day), and demand has remained low since. 

The increase in traffic volumes while public transit ridership remains low indicates a potential shift in 

mode choice attitudes and preference for non-public modes of travel.  

5.2.3 Micromobility 

Figure 33 shows the total bike counts near Fremont Bridge between mid-February and late-April, 2020. 

During the first two weeks of March, 2020, the number of bikes gradually decreased, corresponding to 

work-from-home recommendation made on March 5, 2020 in Seattle [51]. Counts reached the lowest 

level at the end of March, which is consistent with the pattern change in travel time and traffic volume. 

Higher counts (+3,500) are observed on weekdays while fewer counts (~1,000) on weekends between 

mid-February to early-March. In April, bike counts grew to nearly 2,100, without a clear weekday/ 

weekend pattern, possibly due to an increase in the use of bikes for recreational purposes and as a 

result of the “Stay Healthy Streets closures” program, that allowed for safe social distancing building off 

of the 196 miles of Seattle’s bike facilities and trails. Initial observations in 2020 indicate bike travel was 

up 299% from 2017 along Stay Healthy Streets in the Central District, which may contribute to the 

observed bike trend in Figure 33.  

 

Figure 33 Seattle bike counts near Fremont Bridge (Figure source: Seattle DOT bike counters) 
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5.3 Pedestrian and Social Distancing 

5.3.1 NYC311 Service Requests 

The 311 service line provides a way for NYC residents to find information about services, make 

complaints, and report problems. Not following social distancing guidelines currently carries a penalty of 

$1,000. On March 28, 2020, a new category called “Social Distancing” was added as a subtype under the 

“Non-Emergency Police Matter” complaint in NYC311. A complaint could be made for violation of social 

distancing rules to report a business or location that is required to be closed, an essential business that 

is open but is not complying with necessary restrictions or overcrowding at a business or location.  

The number of reports to 311 surged starting from the first day of stay-at-home, with most of the 

complaints being directed at stores or commercial buildings, followed by residential buildings, 

streets/sidewalks, and playgrounds. A steady increase of complaints in the following weeks made the 

“non-emergency police matter” category shoot up to the second spot among all complaint types 

reported to 311 (Table 7). There was a total of 17,470 such complaints made in under a month (March 

28 to April 22, 2020), with 16,925 of them being about social distancing, reported from all five boroughs 

of New York City.  

Table 7 The top 10 complaint types in NYC311 before and after stay-at-home order 

 Feb 22 - Mar 21, 2020  Mar 21 - Apr 22, 2020 

Rank Complaint Type Complaint Type 

1 Noise- Residential Noise- Residential 

2 Heat/Hot Water Non-Emergency Police Matter 

3 Illegal Parking Heat/Hot Water 

4 Blocked Driveway Consumer Complaint 

5 Street Condition Illegal Parking 

6 Street Light Condition Noise- Street/Sidewalk 

7 Noise- Street/Sidewalk Street Light Condition 

8 General construction Blocked Driveway 

9 Consumer Complaint Noise 

10 Noise Noise- Vehicle 
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5.3.2 Computer vision-based detection output 

Using the aforementioned methodology in Chapter 4, the computer vision-based detection outputs all 
traffic-related objects (i.e., person, car, truck, bicycle, bus) as well as the total number of pedestrians 
that are in close contact in each frame. It builds a bounding box around the detected objects and assigns 
a class name and probability. The framework also highlights the pedestrians that are in close contact 
with blue lines in each frame. Figure 34 presents an example of the video processing output at one of 
the selected locations. Figure 34 also illustrates the number of detected objects in the video frame, 
including pedestrians, cars, and buses. Showcase of the detection output at various locations can be 
seen at https://c2smart.engineering.nyu.edu/covid-19-sociability-board/. 

 

 

Figure 34 Example of detection output (including bounding box of identified objects; blue 

lines highlight the pedestrian pairs with a distance less than the threshold; and crowd density 

pie-chart.) 

As a case study, we sampled 11 key camera locations that are spatially dispersed in the five boroughs of 

NYC and have different land use or sociodemographic characteristics (e.g., close to hospitals, meal 

distribution centers, or subway entrances) to evaluate the proposed method. Because the cameras are 

sometimes repositioned to view traffic from varying directions, representative weekdays with similar 

camera conditions are selected for these locations. The program is implemented in real-time and is run 

on an instance configured with Intel Core i7-7700HQ@2.8GHz CPU, 16GB RAM, and NVIDIA GeForce GTX 

1060 GPU, Windows 10 64-bit operating system. The average running time is around 0.13 

sec/frame/location without real-time visualization and 0.38 seconds/frame with real-time visualization. 

The average pedestrian density and overall sociability metrics, considering various distances (e.g., 3-feet, 

6-feet, and 12-feet) suggested by different agencies and experts [52-54] for the sampled locations, are 

summarized in Figure 35 and Table 8. Findings show that pedestrian density drops to the lowest point 

from mid-April to mid-May, where one pedestrian or less is captured in recorded frames for more than 

https://c2smart.engineering.nyu.edu/covid-19-sociability-board/
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half the time. The results show a positive skew, with the mean higher than the median, except on May 

27, 2020, which displays a negative skew, and on Jun 18, 2020, which is normally distributed.  

A gradual increase in pedestrian volumes is observed, starting from the end of May, reaching a peak in 

the middle of June. Accordingly, the ratio of people following social distancing guidelines (the social 

distancing rate) dropped slightly from April to May for all the suggested distances [3]. This rate slightly 

increases at the beginning of June 2020 and fluctuates around the new increased value. 

 

Figure 35 Box plot of the average pedestrian density/frame for different dates. The box 

shows the interquartile range (IQR), the 1st to the 3rd quantile of the data (Q1 and Q3). The 

whiskers extend 1.5 times the IQR from the Q1 and Q3. The green triangles are the mean 

values, and the "notches" indicate the 95% confidence interval of the median. We did not 

include the outliers in this plot, but Table 8 shows the maximum pedestrian densities for each 

date. 

Table 8 COVID-19 Sociability Metrics, Selected Weekdays 

 Apr 2 Apr 15 May 13 May 27 Jun 18 Jun 24 

Average Peds Density (#/frame) 2.36 1.84 1.82 2.91 3.14 3.08 

Maximum Peds Density (#/frame) 12 16 11 13 17 19 

Social Distancing Adherence Rate (> 3 ft) 97.6% 96.3% 96.1% 95.2% 97.1% 97.1% 

Social Distancing Adherence Rate (> 6 ft) 94.0% 91.8% 90.5% 88.7% 91.7% 91.3% 

Social Distancing Adherence Rate (> 12 ft) 85.7% 83.7% 81.1% 75.8% 81.4% 80.3% 

We compared the total number of pedestrians in close contact (distance<12, 6, and 3 feet) and the 
number of newly reported positive cases in NYC over time using the data generated by the proposed 
algorithm. In Figure 36, it is apparent that when the number of daily cases (annotations in the circle) 
decreases, more people go outside and get in closer contact with each other, with a lower number of 
people complying with social distancing guidelines [3]. There may be other underlying factors not 
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identified in this study that impact the decision for people to go outside in greater numbers and reduce 
observed distance between each other after April 15, 2020. 

 

Figure 36 The total number of pedestrians in close contact (Distance<12ft) vs. the number of 

newly reported infection cases in NYC over time. The numbers in the circles are the daily new 

cases of COVID-19 in NYC for the given date, and the size of each circle indicates the number 

of pedestrians in close contact on that date. 
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Similar to NYC, the social distancing violation detection algorithm was implemented for a local street 

intersection (Broadway & E Pike St EW) in Seattle with a frame rate of 30 seconds. Results on May 18, 

2020 show an average pedestrian density of 3.2 people/frame, a maximum pedestrian density of 12 

people/frame, and a pedestrian social distancing compliance rate of 89%. 

5.3.3 Heatmaps of clustered pedestrians 

Through the analysis of heatmaps for each site, spatial patterns of social distancing have also been 

explored. This intends to highlight hotspots at which pedestrians are in close contact with each other. The 

heatmaps generated in Figure 37 use a 12-feet rule as a case study. Each pedestrian pair less than 12 feet 

apart is flagged and clustered to generate heatmaps for selected study locations and times. It is worth 

noting that instead of representing pedestrian densities, these heatmaps illustrate detection areas that 

capture high frequencies of close contact events. Generated heatmaps can serve as a visual cue to help 

understand and identify areas with a high risk of close contact between pedestrians.  

 

 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  44 

Figure 37 Heatmaps of clustered pedestrians (distance < 12 feet). For row two to four, from 

top to bottom: Apr 2, 2020, May 13, 2020, and Jun 24, 2020. Due to the camera movement, 

the third column's camera cannot capture the right-side sidewalk on May 13 and Jun 24, so 

the related heatmaps do not contain hot zones on the right-side. 

5.3.4 24-hour Temporal Density Distribution 

Based on the object detection outputs from the cameras, temporal density distribution profiles are 

constructed for one study location where pre-pandemic data is available to investigate potential temporal 

pattern changes. Figure 38 shows the 24-hour distribution of pedestrian densities at a selected site that 

had a typically high and consistent pedestrian density throughout the day before the outbreak of COVID-

19. Compared to pre-pandemic levels, pedestrian density remains very low in April and May and gradually 

increases in June 2020 after the city’s reopening. In addition, peak hours are shifted - afternoons (3:00 

pm-5:00 pm) become the period with the highest pedestrian density for this location in May 2020, before 

the city’s reopening. These temporal changes in pedestrian behavior may deserve more attention amid 

the COVID-19 pandemic, and appropriate response measures can be carried out (e.g., examining open 

street strategies, recommending staggered work hours to nearby companies) [3]. This temporal analysis 

assists in the investigation of the rebound of the pedestrian demand. The public should be continuously 

reminded of the potential risk of exposure in crowded environments, including in the open space of urban 

streets. 

 

 

Figure 38 24-hour temporal distributions of pedestrians at one sampled location. 
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5.3.5 System Deployment Cost Estimation 

Table 9 lists the estimated deployment costs for key components in deploying the video detection system 
based on 68 existing cameras in the NYCDOT system. It is assumed that the server will continue to collect 
the video feeds with an interval of every 30s, which results in a daily data size about 6GB.  Although the 
current detection system uses a local server approach, the deployment costs based on cloud-based 
services are also estimated. The cost may vary depends on the number of cameras and data collection 
interval. Considering the requirement of the scalability, data availability, security, and performance, the 
Amazon cloud service (EC2 instance and Simple Storage Service (S3)) was used for estimating the cloud-
based approach for server and storing the image data. The cloud-based service provides a platform which 
integrates access controls, auto backup service, data security and big data analytics. It also provides 
different pricing classes for users to choose based on their strategies. Two cost strategies are explored: 

Plain File Storage 

o Images are stored directly to the cloud-server. 
o Users can easily view any existing images on the website with credentials. 
o Users can set up queries to filter out the required images to process. 
o The price includes storage pricing, request and data retrieval pricing, data transfer and transfer 

acceleration pricing, and data management features pricing.  
o The total file amount can enormous because of the plain file storage method, which leads to a 

large number of requests for reading each image.  

Zip File Storage 

o Images are zipped based on time range or intersection before uploading to the cloud-server. 
o Comparing to the Plain File Storage, the data request and retrieval price are decreased from 

million level to digit level, which reduces the cost. 
o Users must download and unzip the file before processing. 
o The price includes storage pricing, request and data retrieval pricing, data transfer and transfer 

acceleration pricing, and data management features pricing.  

The price listed in Table 9 is estimated based on plain file storage strategy and a three-year contract 
with the Amazon cloud service. The price could be further reduced if zip file storage strategy is used. 
Moreover, the current system stores all the image files for validation purpose, once the program is 
validated, agencies have the flexibility of storing only the detection results without saving the image 
files, which can further reduce the storage requirements and cost. 

Since the detection system is built on existing traffic camera system, no additional hardware 
maintenance costs are required. Cloud-based server maintenance fee is often included in the service 
and the maintenance cost for local server is minimal, so these costs are not quantified. The cost of 
running the program is not included as the detection program can be run on any regular desktop/laptop 
computer. 

 

 



 

 COVID-19's Effect on Transportation: Developing a Public COVID-19 Data Dashboard  46 

Table 9 Estimated system deployment cost (Annual cost based a 3-year estimation with 68 

cameras; data collection interval is every 30s (daily data size: 6GB); plain file storage). 

*Cloud-based cost is estimated based on Amazon EC2 instance and S3 storage. 

It worth noting that local server-based service can be cheaper in the long term, provided the data 
storage does not exceed the NAS device limit (e.g., $998/year for a 5-year estimate). Cloud-based 
services can be more expensive in the long term as more data needs to be stored on the cloud (e.g., 
$1631/year for a 5-year estimate if using S3 standard storage) and may need a local server to archive 
the data or other storage service such as S3 infrequent access or deep archive to reduce the costs. 

5.4 Agent-based Simulation Virtual Testbed COVID-19 Travel Survey 

The COVID-19 Data Dashboard also connects to C2SMART’s MATSim agent-based simulation virtual 

testbed [6] that provides network performance and emission evaluation for reopening phases and 

C2SMART COVID-19 Travel Survey that collected responses nationwide about travel behavior changes. 

5.4.1 MATSIM Agent-based Simulation Virtual Testbed 

Well-calibrated agent-based simulation models built in MATSim [55] were used to study the impact of 

COVID-19 on the NYC transportation system as well as potential policies for the reopening of NYC. Two 

baseline models were developed and calibrated: 1) A Pre-COVID model that simulates typical travel 

behavior, and 2) a COVID model that represents travel behavior during the first month of the COVID-19 

pandemic. C2SMART researchers developed the Pre-COVID model called MATSim-NYC, using a synthetic 

 Cost component Cost 

Local Server-based 

Services 

One-time server acquisition  $600 

Network Attached Storage (NAS) device (up to 

65TB) acquisition 

$4390 

Annual Cost (Based on a 3-year estimate) $1663 / year 

Cloud-based Services 

– Option 1 

EC2 server (t4g.micro, 2CPU, 1GB memory） $67.56/year 

S3 One Zone-Infrequent Access storage $394.2/year 

Data Transfer (180 GB/per month (Inbound) and 

50 GB/per month (outbound)) 

$52.92/year 

Annual Cost (Based on a 3-year estimate) $514.68/year 

Cloud-based Services 

– Option 2 

EC2 server (t4g.micro, 2CPU, 1GB memory） $67.56/year 

S3 standard storage $906.72/year 

Data Transfer (180 GB/per month (Inbound) and 

50 GB/per month (outbound)) 

$52.92/year 

Annual Cost (Based on a 3-year estimate) $1,027.20/year 
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population of more than 8 million New Yorkers and calibrated transit schedules [55]. This open-source, 

large-scale transportation model covers the entire NYC area and integrates data and modeling 

capabilities for new technologies and modes. The calibrated models are being used to study: 

• Scenarios of multiple reopening phases 

• Mode and system usage for various reopening policies and social distancing strategies 

• Emissions and air quality impacts 

Findings from the model indicate that because of changed preferences, a full reopening would perhaps 

only see as much as 73% of pre-COVID transit ridership and an increase in the number of car trips by as 

much as 142% of pre-pandemic levels, assuming mode preferences held during the crisis are 

maintained. Evidence from other cities further in the reopening process points to lingering mode choice 

preferences from the pandemic during reopening, however due to unique mode-choice in NYC, these 

numbers may represent an extreme case. The effect of capacity restrictions on public transit, like those 

applied in some cities, was also studied. Limiting transit capacity to 50% would potentially decrease 

transit ridership to as low as 64% while increasing car trips to as much as 143% of pre-pandemic levels 

by Phase 4 of NY’s reopening plan. Details about the MATSim model can be found in [55]. 

5.4.2 C2SMART COVID-19 Travel Survey 

A COVID-19 mobility survey was conducted as a parallel effort to explore the pandemic’s impact on 

behavior across different demographics, with special attention paid to individuals with a disability, low-

income households, and other disadvantaged or underrepresented groups in transportation research 

and planning. A total number of 2022 of responses were collected national wide. 1121 completed 

responses were received from residents from the five boroughs of New York City (NYC) with 45% 

respondents identified as living with a disability and 23% live in a low-income household (earning less 

than $50,000/year). At a time when certain mobility practices and challenges have become part of our 

new daily routines, the survey data will help understand what the real needs for disadvantaged 

population groups are, in the event of a pandemic. This, in turn, will aid the cities and transportation 

agencies in assessing a more equitable planning process to address their short-term and long-term trip 

needs. The following fact sheet presents a quick summary of the survey results. Please refer to [5] for 

more details. 

5.5 White Papers 

Over the course of the COVID-19 Data Dashboard's development, the team has published five 

white papers detailing this research. All white papers available for open access download. Please 

refer to Appendix A for more details. 
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Figure 39. C2SMART COVID Mobility Survey Fact Sheet 
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6. Lessons Learned 

6.1 Developing and deploying computer vision-based data collection applications 

The following considerations could help when developing and deploying computer vision-based data 

collection applications, especially for pedestrian detection: 

• Utilize existing transportation infrastructure and ITS devices (e.g., CCTV cameras) to minimize 

deployment cost when designing a computer vision-based data collection application. 

• Develop an expandable framework to accommodate potential future needs of new features or 

add-ons to the current system. 

• Engage with local partners to ensure relevant agencies and stakeholders can use the data and its 

findings to adapt policy interventions and outreach. 

• Account for privacy when designing a computer vision-based application for pedestrian 

detection. Masks, blur filters, and reduced image resolution can be useful, simple solutions for 

protection of personal identities. 

• Low resolution and frame rate cameras are sufficient to provide pedestrian density information 

with appropriate pre- and post-processing filters and existing computer vision techniques.  

• Emerging technologies, such as AI-based automated detection, can be useful for short-term 

before-after evaluations since they can reduce the time and effort associated with manual data 

collection. 

• Remote data collection and reference-free distance approximation techniques can improve 

flexibility, reduce labor costs, and minimize the dangers of fieldwork (e.g., during a pandemic) , 

as human investigators are not required. 

• Detection accuracy largely depends on the resolution, sampling rate, and angle of the camera as 

well as the training image set. The detection model can be retrained using localized annotated 

images to improve performance.  

• Cloud-based server and storage service is cheaper in the short-term (i.e., less than 5 years) when 

compared with local server and storage [56]. However, data archiving needs to be considered if 

cloud-based server and storage service is used for the long term.  

• Local server storage is a good option for testing or piloting a video detection system. It is easy to 

set up but may suffer from single point failure (i.e., when the server is down, there is no 

incoming data, and data cannot be retrieved before it is restarted). To avoid this, a backup local 

server is needed, which may double the server acquisition cost. 
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6.2 Dashboard Performance 

This study revealed the following lessons and suggestions on dashboard performance: 

• Performance was a major issue we encountered. In the initial design, we planned to display 

multiple visualizations on the same page for comparison. However, this resulted in a long 

loading time. We recommend considering performance issues in advance when designing the 

interface and choosing visualization tools. 

• The performance of web-based visualizations is affected by two main aspects: data transfer and 

rendering. Reduce the amount of data to make accelerate data transfer. Remove unnecessary 

fields and compress the data. For example, use a more efficient data format or perform lossy 

compression to reduce the granularity or precision of the data. When having control over data 

loading, there are some other optimization methods, such as transferring the data in chunks or 

using streaming data. 

• In terms of rendering, there are three common ways to render shapes on a web page: SVG, 

Canvas API, and APIs for GPU like WebGL. They have different use cases and will affect the 

performance. SVG is for rendering high-quality vector graphics. It is suitable for rendering a 

small number of shapes (about 1000). As the number of shapes grows, the performance 

inevitably will drop, developers need to reduce the number of shaps or use other rendering 

methods. Canvas API has better performance than SVG when rendering thousands of shapes. 

But it still has a limit and would slow down on larger screens. WebGL and other APIs for GPU 

harness hardware optimization to support unlimited 2D and 3D rendering. This is the fastest 

way but is harder to implement. visualization tools may not support changing the way of 

rendering. Tableau, for example, uses Canvas and does not support GPU optimizations. If there 

is no other way but to build a customized visualization using Javascript libraries, we recommend 

using more high-level libraries to save time and ensure compatibility. 

 

6.3 Dashboard Automation 

Recommendations about automating data collection and display are provided as follows: 

• Although we built an automated pipeline, human intervention is always required. The software 

updates may bring challenges to the automated pipeline and most importantly, we do not have 

control over the open data sets. The data format, API, and update time might be changed as 

time passed. Therefore, visualizations need to be checked regularly. It is also recommended to 

generate logs and use job schedulers in the backend to monitor the process so that when a 

visualization fails, maintainers can quickly detect the problem. 
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7. Conclusion and Future Work 

An interactive data dashboard that serves as an all-in-one data fusion tool for COVID related 

transportation open data is introduced in this study. It uses data mining and deep learning techniques 

for data acquisition and processing and supports interactive data visualization and data analytics for 

quantifying multiple mobility and sociability metrics.  

The current dashboard contains vehicular traffic, transit, micromobility, freight, taxi, and risk indicators, 

such as speeding ticket and crash records for NYC, as well as traffic data in Seattle, Chicago and six cities 

from China. The data sources are displayed in a user-friendly dashboard and are continuously updated 

giving researchers and interested members of the public access to dynamic information about the 

changing state of mobility during the pandemic and beyond. The crowd density and social distancing 

compliance for pedestrians based on data obtained from publicly available DOT cameras using state-of-

the-art video processing techniques can provide useful insights into daily pedestrian and cyclist 

demands and their behavior in terms of maintaining social distance.   

Two years after the outbreak of COVID-19 pandemic, data from both NYC and Seattle shows that while 

vehicular traffic volume is back to the pre-pandemic level, transit usage remains 40% lower, compared 

to same period in 2019. Adapting to the “new normal” and taking actions to address these enormous 

challenges in the aftermath of COVID-19 is crucial: providing safe and accessible micromobility network 

and open space for pedestrians, reducing traffic violence and inequality, balancing vehicular traffic and 

encouraging sustainable transportation alternatives of all ages and abilities, and maintaining the 

affordability and functionality of transit systems. Deeper consideration for vulnerability assessments and 

incremental improvements to make transportation systems more resilient and well-prepared are still 

needed. 

As the world continues to adjust to the new reality in the aftermath of COVID-19, we will continue to 

collect data, including perishable mobility, safety, and behavior data, and will continue to monitor these 

trends. One of the future works is to integrate the mobility dashboard, as well as the data pipeline, to be 

part of the center’s data ecosystem (Figure 40). To collect and analyze large-scale data, we plan to use 

cloud-based products for integration, storage, and analysis. We can further upgrade the pipeline using 

Serverless frameworks. Currently, we run a server in the background to achieve automation that can be 

monitored. But since scripts are only run occasionally, usually no more than once a week, serverless 

would be a more scalable and cost-effective solution, especially when using cloud services. For most 

open data that only requires simple filtering and formatting, we can use Google Script with trigger, 

Google Spreadsheet, and Tableau Public. For other datasets that involve advanced analysis, we can use 

AWS Lambda,  Google Spreadsheet, and Tableau Public. 
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Figure 40 Data Ecosystem 

Moreover, as an ongoing effort, this Artificial Intelligence (AI)-based object tracking approach will be 
extended to cover 100 camera locations to continuously evaluate the changes in crowd density and 
social distancing between pedestrians. It is also possible to translate these findings in near real-time and 
use them in the post-pandemic era, tracking density trends during special events where crowding may 
occur. These findings can also be used for predictive analysis forecasting future cycling rates. 
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Summary of Research Outputs and Tech Transfer 

As of April 20, 2022, the COVID-19 Data Dashboard had over fifty thousand website views (52,876 views). 

The number of sub-board views are shown in Figure 41. 

 

Figure 41 Sub-board Views 

As an outcome of this research project, several research outputs were produced along with dissemination, 

including 5 journal and conference papers, 5 whitepapers, 2 videos, and 8 presentations. Moreover, this 

research was also highlighted and in the USDOT UTC newsletter and included in a case study for USDOT 

ITSJPO’s ITS deployment database and the USDOT UTC video forum. The papers and whitepapers were 

cited by 146 researchers and the videos presenting the dashboard had 1,095 views, as of April 2022. Table 

10 summarizes those results.  

Table 10. Summary of research outputs 

Output type Description Link/source 

Dashboard The developed COVID-19 Data 

Dashboard. 

https://c2smart.engineering.nyu.edu/c2s

mart-data-dashboard/ 

Newsletter University Transportation Center (UTC) 

Spotlight, UTC quarterly newsletter, 

Issue 3, July 2021 

https://www.transportation.gov/utc/usin

g-video-feeds-public-traffic-cameras-and-

computer-vision-analyze-social-

distancing-and 

Case Study ITSJPO ITS Development Database, 

Decision Support Resources 

Submitted and approved, waiting for 

publication 
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NYC Transit Ridership

NYC Overall Vehicular Traffic

NYC Weekly Vehicular Traffic

NY-NJ Monthly Crossing Volume

NYC Citywide Speed Map

NYC Key Corridor Travel Time

NYC Freight Volumes

NYC Taxi

NYC Crashes

NYC Speeding Tickets

Seattle Traffic Volume

Seattle Corridor Travel Time

Subway Ridership (Chinese Cities)

https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/
https://c2smart.engineering.nyu.edu/c2smart-data-dashboard/
https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
https://www.transportation.gov/utc/using-video-feeds-public-traffic-cameras-and-computer-vision-analyze-social-distancing-and
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Video USDOT University Transportation 

Center Video Forums on Artificial 

Intelligence, March 18, 2022 

https://vimeo.com/boozallencreativestud

io/review/689399213/c3e226785d 

Video C2SMART COVID-19 Data Dashboard 

Showcase  

https://youtu.be/9hTTc5qAVOU 

 

Paper Zuo, F., Wang, J., Gao, J., Ozbay, K., 

Ban, X., Shen. Y., Yang, H. and Iyer, S. 

(2020), An Interactive Data 

Visualization and Analytics Tool to 

Evaluate Mobility and Sociability 

Trends During COVID-19, UrbComp 

2020: The 9th SIGKDD International 

Workshop on Urban Computing, San 

Diego, California, USA. 

http://urban.cs.wpi.edu/urbcomp2020/fil

e/05.pdf 

Paper Zuo, F., Gao, J., Kurkcu, A., Yang, H., 

Ozbay, O. and Ma, Q., Reference-free 

video-to-real distance approximation-

based urban social distancing analytics 

amid COVID-19 pandemic, Journal of 

Transport & Health, Volume 21, 2021. 

https://www.sciencedirect.com/science/a

rticle/abs/pii/S2214140521000268 

Paper Bian, Z., Zuo, F., Gao, J., Chen, Y., 

Venkata, S.S.C.P., Bernardes, S.D., 

Ozbay, K., Ban, X.J. and Wang, J., 2021. 

Time lag effects of COVID-19 policies 

on transportation systems: A 

comparative study of New York City 

and Seattle. Transportation Research 

Part A: Policy and Practice, 145, 

pp.269-283. 

https://www.sciencedirect.com/science/a

rticle/abs/pii/S0965856421000276?via%3

Dihub 

Paper Wang, D., He, B. Y., Gao, J., Chow, J. Y., 

Ozbay, K., & Iyer, S. (2021). Impact of 

COVID-19 Behavioral Inertia on 

Reopening Strategies for New York City 

Transit. International Journal of 

Transportation Science and 

Technology. 

https://www.sciencedirect.com/science/a

rticle/pii/S2046043021000046 

Paper Wang, D., Tayarani, M., He, B. Y., Gao, 

J., Chow, J. Y., Gao, H. O., & Ozbay, K. 

(2021). Mobility in post-pandemic 

economic reopening under social 

distancing guidelines: Congestion, 

https://www.sciencedirect.com/science/a

rticle/pii/S0965856421002299 

https://vimeo.com/boozallencreativestudio/review/689399213/c3e226785d
https://vimeo.com/boozallencreativestudio/review/689399213/c3e226785d
https://youtu.be/9hTTc5qAVOU
http://urban.cs.wpi.edu/urbcomp2020/file/05.pdf
http://urban.cs.wpi.edu/urbcomp2020/file/05.pdf
https://www.sciencedirect.com/science/article/abs/pii/S2214140521000268
https://www.sciencedirect.com/science/article/abs/pii/S2214140521000268
https://www.sciencedirect.com/science/article/abs/pii/S0965856421000276?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0965856421000276?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0965856421000276?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2046043021000046
https://www.sciencedirect.com/science/article/pii/S2046043021000046
https://www.sciencedirect.com/science/article/pii/S0965856421002299
https://www.sciencedirect.com/science/article/pii/S0965856421002299
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emissions, and contact exposure in 

public transit. Transportation Research 

Part A: Policy and Practice, 153, 151-

170. 

White paper Gao, J., Bernardes, S.D., Bian, Z., 

Ozbay, K., Iyer, S. 2020. Initial Impacts 

of COVID-19 on Transportation 

Systems: A Case Study of the U.S. 

Epicenter, the New York Metropolitan 

Area. 

https://c2smart.engineering.nyu.edu/wp-

content/uploads/2022/04/Whitepaper-

Issue-1.pdf 

White paper Gao, J., Wang J., Bian, Z., Bernardes, 

S.D., Chen, Y., Bhattacharyya, A., 

Soorya Muruga Thambiran, S., Ozbay, 

K., Iyer, S., Ban, X. 2020. The Effects of 

the COVID-19 Pandemic on 

Transportation Systems in New York 

City and Seattle, USA. 

https://c2smart.engineering.nyu.edu/wp-

content/uploads/2022/04/Whitepaper-

Issue-2.pdf 

White paper Wang, D., Zuo, F., Gao, J., He, Y., Bian, 

Z., Bernardes, S.D., Na, C., Wang, J., 

Petinos, J., Ozbay, K. and Chow, J.Y., 

2020. Agent-based Simulation Model 

and Deep Learning Techniques to 

Evaluate and Predict Transportation 

Trends around COVID-19. 

https://c2smart.engineering.nyu.edu/wp-

content/uploads/2022/04/C2SMART-

COVID-19-Whitepaper-Issue3-1.pdf 

White paper Bernardes, S.D., Bian, Z., Thambiran, 

S.S.M., Gao, J., Na, C., Zuo, F., 

Hudanich, N., Bhattacharyya, A., 

Ozbay, K., Iyer, S. and Chow, J.Y., 2020. 

NYC Recovery at a Glance: The Rise of 

Buses and Micromobility. 

https://c2smart.engineering.nyu.edu/wp-

content/uploads/2022/04/C2SMART-

COVID-19-Whitepaper-Issue-4.pdf 

White paper Gao, J., Bhattacharyya, A., Wang, D., 

Hudanich, N., Sooryaa, S., Thambiran, 

M., Bernardes, S.D., Na, C., Zuo, F., 

Bian, Z. and Ozbay, K., 2020. Toward 

the" New Normal": A Surge in 

Speeding, New Volume Patterns, and 

Recent Trends in Taxis/For-Hire 

Vehicles. 

https://c2smart.engineering.nyu.edu/wp-

content/uploads/2022/04/C2SMART-

COVID-19-Whitepaper-Issue5.pdf 

Presentation 2020 C2SMART webinar. Jingqin Gao, 

Yubin Shen, Developing C2SMART’s 

Interactive COVID-19 Data Dashboard 

https://youtu.be/pnMxK0e7iqQ 

 

https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-2.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-2.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/Whitepaper-Issue-2.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue3-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue3-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue3-1.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue-4.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue-4.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue-4.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue5.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue5.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2022/04/C2SMART-COVID-19-Whitepaper-Issue5.pdf
https://youtu.be/pnMxK0e7iqQ
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Presentation 2020 C2SMART webinar. Fan Zuo, 

Public Traffic Cams and Computer 

Vision to Analyze Social Distancing 

Trends 

https://youtu.be/EwVEuqSW5ig 

 

Presentation BTR #2 Aug 2020 - Track 1: COVID-19 

Pandemic and Transportation. Joseph 

Chow, Impact of COVID-19 Behavioral 

Inertia on Reopening Strategies for 

NYC Transit. 

https://youtu.be/vFN3fR8ZLjI?t=12596 

 

Presentation BTR #2 Aug 2020 - Track 1: COVID-19 

Pandemic and Transportation. Kaan 

Ozbay, Remote Capturing of social 

distancing through advanced video 

analytics under COVID-19 conditions.  

https://youtu.be/vFN3fR8ZLjI?t=20988 

Presentation ITS-NY Emerging Trends Webinar https://static1.squarespace.com/static/5a

998fe5a9e0286b82f94913/t/6179c8fa21c

10f3ba883663b/1635371259705/Jannie_

Ding_Presentation.pdf 

Presentation TRB Webinar: Visualizing Effects of 

COVID-19 on Transportation: A One-

Year Retrospective 

https://www.nationalacademies.org/even

t/03-08-2021/trb-webinar-visualizing-

effects-of-covid-19-on-transportation-a-

one-year-retrospective 

Presentation The Third Annual National Mobility 

Summit of US Department of 

Transportation University 

Transportation Centers, Apr 15, 2021 

http://mobility21.cmu.edu/wp-

content/uploads/2021/04/C2SMART_Slid

es_UTC_National-Mobility-

Summit_20210415-r.pdf 

Presentation NYU Urban Research Day 2021 https://www.nyu.edu/content/dam/nyu/

urbanInitiative/documents/2021%20URD

%20Digital%20Booklet.pdf 

 

 

 

 

https://youtu.be/EwVEuqSW5ig
https://youtu.be/vFN3fR8ZLjI?t=12596
https://youtu.be/vFN3fR8ZLjI?t=20988
https://static1.squarespace.com/static/5a998fe5a9e0286b82f94913/t/6179c8fa21c10f3ba883663b/1635371259705/Jannie_Ding_Presentation.pdf
https://static1.squarespace.com/static/5a998fe5a9e0286b82f94913/t/6179c8fa21c10f3ba883663b/1635371259705/Jannie_Ding_Presentation.pdf
https://static1.squarespace.com/static/5a998fe5a9e0286b82f94913/t/6179c8fa21c10f3ba883663b/1635371259705/Jannie_Ding_Presentation.pdf
https://static1.squarespace.com/static/5a998fe5a9e0286b82f94913/t/6179c8fa21c10f3ba883663b/1635371259705/Jannie_Ding_Presentation.pdf
https://www.nationalacademies.org/event/03-08-2021/trb-webinar-visualizing-effects-of-covid-19-on-transportation-a-one-year-retrospective
https://www.nationalacademies.org/event/03-08-2021/trb-webinar-visualizing-effects-of-covid-19-on-transportation-a-one-year-retrospective
https://www.nationalacademies.org/event/03-08-2021/trb-webinar-visualizing-effects-of-covid-19-on-transportation-a-one-year-retrospective
https://www.nationalacademies.org/event/03-08-2021/trb-webinar-visualizing-effects-of-covid-19-on-transportation-a-one-year-retrospective
http://mobility21.cmu.edu/wp-content/uploads/2021/04/C2SMART_Slides_UTC_National-Mobility-Summit_20210415-r.pdf
http://mobility21.cmu.edu/wp-content/uploads/2021/04/C2SMART_Slides_UTC_National-Mobility-Summit_20210415-r.pdf
http://mobility21.cmu.edu/wp-content/uploads/2021/04/C2SMART_Slides_UTC_National-Mobility-Summit_20210415-r.pdf
http://mobility21.cmu.edu/wp-content/uploads/2021/04/C2SMART_Slides_UTC_National-Mobility-Summit_20210415-r.pdf
https://www.nyu.edu/content/dam/nyu/urbanInitiative/documents/2021%20URD%20Digital%20Booklet.pdf
https://www.nyu.edu/content/dam/nyu/urbanInitiative/documents/2021%20URD%20Digital%20Booklet.pdf
https://www.nyu.edu/content/dam/nyu/urbanInitiative/documents/2021%20URD%20Digital%20Booklet.pdf
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Appendix 

White paper issue 1: Initial Impacts of COVID-19 on Transportation Systems: A Case Study of the U.S. 

Epicenter, the New York Metropolitan Area 

https://www.dropbox.com/s/jajp7nz05q2t314/C2SMART%20COVID-

19%20Whitepaper_draft_v10_final.docx?dl=0 

White paper issue 2: The Effects of the COVID-19 Pandemic on Transportation Systems in New York City 

and Seattle, USA 

https://www.dropbox.com/s/9qh1fvw8xga0t9u/C2SMART%20COVID-

19%20Whitepaper_Issue2_v11_final.docx?dl=0 

White paper issue 3: Agent-based Simulation Model and Deep Learning Techniques to Evaluate and 

Predict Transportation Trends around COVID-19 

https://www.dropbox.com/s/f1x98dvw425vmb3/C2SMART%20COVID-

19%20Whitepaper_Issue3_v16.docx?dl=0 

White paper issue 4:NYC Recovery at a Glance – The Rise of Buses and Micromobility 

https://www.dropbox.com/s/ge7cjjsibfodmkb/C2SMART%20COVID-

19%20Whitepaper_Issue4_v12.docx?dl=0 

White paper issue 5: Toward the “New Normal” – A Surge in Speeding, New Volume Patterns, and 

Recent Trends in Taxis/For-Hire Vehicles 

https://www.dropbox.com/s/i5hfe9ejs1sac59/C2SMART%20COVID-

19%20Whitepaper_Issue5_v8.docx?dl=0 
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